Outline	Introduction	Data	Estimation Process	Results	Conclusions
0	000000	0		00000	00

Economic Development and Environmental Sustainability: Evidence from Bahrain

Fatema Alaali¹ and Hanan Naser²

¹College of Business and Finance - Ahlia University - Bahrain

²Faculty of Business Studies - Arab Open University - Bahrain

June 13, 2019

Outline	Introduction	Data	Estimation Process	Results	Conclusions
●	000000	0		00000	00
Table of Contents					

Introduction

2 Data

Stimation Process

Results

Outline	Introduction	Data	Estimation Process	Results	Conclusions
O	●○○○○○○	0		00000	00
Background					

Background and Literature

- Bahrain population is about 1.5 million people
- about 1936 people per square kilometer of land area and a population growth of 4.6% in the year 2017
- Oil and gas sector contribution to Bahrain GDP is 19% in 2017 compared to 44% in year 2000
- Financial sector portion is 17% in 2017

Outline O	Introduction	Data 0	Estimation Process	Results 00000	Conclusions 00
Background					

Background and Literature

- Electric power consumption per capita increased by 3.2% over the period 2004 and 2014
- Higher local demand for electricity ⇒ Higher electricity and heat production
- Electricity production is responsible for 80.5% of total fuel combustion of *CO*₂ emissions in 2014

Outline	Introduction	Data	Estimation Process	Results	Conclusions
0	○○●○○○○	0		00000	00
Background					

Background and Literature

• CO₂ Emissions have a great impact on the global warming

₩

- Warming oceans
- Melting ice mass
- Increasing evaporation

Outline O	Introduction	Data 0	Estimation Process	Results 00000	Conclusions 00
Literature					

- *CO*₂ emissions as a measure of environmental degradation Chandran and Tang (2013); Onafowora and Owoye (2014); Shahbaz et al. (2014); Charfeddine and Khediri (2016); Lorente and Alvarez-Herranz (2016); Alshehry and Belloumi (2017); Bekhet et al. (2017); Ozokcu and Ozdemir (2017); Wang et al. (2017); Efiong and Iriabije (2018); Salahuddin et al. (2018), among others
- Different air pollutants such as NO_2 , SO_2 , CO, PM2.5 and CH_4 Day and Grafton (2003); Fodha and Zaghdoud (2010); Cho et al. (2014); Park and Lee (2011); Le et al. (2018), among others

Outline O	Introduction	Data 0	Estimation Process	Results 00000	Conclusions 00
Literature					

EKC hypothesis argue that (Panayotou, 1993)

"at higher levels of development, structural change towards information-intensive industries and services, coupled with increased environmental awareness, enforcement of environmental regulations, better technology and higher environmental expenditures, result in leveling off and gradual decline of environmental degradation."

Outline	Introduction	Data	Estimation Process	Results	Conclusions
0	○○○○○●○	0		00000	00
Literature					

• Examples of studies which examined the EKC hypothesis Musolesi et al. (2010); Apergis (2016); Zambrano-Monserrate et al. (2018), among others

• EKC literature concerning GCC countries Al-Mulali and Tang (2013); Shahbaz et al. (2014); Charfeddine and Khediri (2016); Alshehry and Belloumi (2017); Bekhet et al. (2017); Salahuddin et al. (2018)

Outline	Introduction	Data	Estimation Process	Results	Conclusions
0	○○○○○●	0		00000	00
Objectives					

Objectives of the study

- Examine the validity of the Environmental Kuznets Curve hypothesis (EKC) in Bahrain
- Investigate the short and long run impacts of economic growth, electric power consumption, foreign direct investment and financial development on CO₂ emissions in Bahrain over the period 1980-2014

Outline	Introduction	Data	Estimation Process	Results	Conclusions
O	0000000	●		00000	00
Variables					

- *CO*₂ is carbon dioxide emissions (metric tons per capita)
- GDP is GDP per capita at constant 2010 US\$
- Elec is electric power consumption (KWh per capita)
- FDI is foreign direct investment, net inflows (% of GDP)
- Fin is domestic credit provided by financial sector (% of GDP)
- Period 1980 to 2014 with 35 observations

Outline	Introduction	Data	Estimation Process	Results	Conclusions
O		0	●○	00000	00
Empirical Model					

CO2 Emissions Model

$$ln(CO_2)_t = \beta_0 + \beta_1 lnGDP_t + \beta_2 (lnGDP_t)^2 + \beta_3 lnElec_t + \beta_4 Fin_t + \beta_5 FDI_t + \varepsilon_t$$
(1)

- *lnCO*₂ is the natural logarithm of carbon dioxide emissions
- *lnGDP*_t is the natural logarithm of GDP per capita
- $(lnGDP_t)^2$ is the quadratic term of GDP per capita
- *lnElec*_t is the natural logarithm of electricity consumption per capita
- *Fin_t* is the financial development measure
- *FDI*_t is the foreign direct investment

Outline	Introduction	Data	Estimation Process	Results	Conclusions
O	000000	0		00000	00
Empirical Model					

ARDL Estimation

$$\Delta ln(CO_2)_t = \delta 0 + \sum_{i=1}^n \delta_{1i} \Delta ln(CO_2)_{t-i} + \sum_{k=1}^q \delta_{2k} \Delta lnGDP_{t-k}$$
$$+ \sum_{j=1}^d \delta_{3d} \Delta (lnGDP_{t-k})^2 + \sum_{l=1}^b \delta_{4l} \Delta lnElec_{t-l} + \sum_{w=1}^y \delta_{5w} \Delta Fin_{t-w}$$
$$+ \sum_{m=1}^r \delta_{6m} \Delta FDI_{t-m} + \theta ECT_{t-1} + \varepsilon_t$$
(2)

Outline O	Introduction	Data 0	Estimation Process	Results ●0000	Conclusions 00
Pre-estimation Tests					

Table	1:	Results	of	Unit	Root	Tests
-------	----	---------	----	------	------	-------

	ADF			KPSS		PP
	Constant	Constant and Trend	Constant	Constant and Trend	Constant	Constant and Trend
lnCO ₂	-3.286**	-3.340*	0.161	0.131	-3.332	-3.358*
lnGDP	-1.073	-2.327	0.309	0.108	-1.291	-2.548
lnElec	-3.225**	-2.545	0.372	0.152**	-3.654**	-2.565
Fin	-0.113	-3.043	0.460**	0.146**	0.222	-2.985
FDI	-5.507***	-5.480***	0.286	0.147**	-5.611***	-5.553***
$\Delta lnCO_2$	-7.401***	-7.300***	0.162	0.156**	-7.686***	-7.597***
$\Delta lnGDP$	-4.739***	-4.629***	0.138	0.114	-4.759***	-4.615***
$\Delta ln Elec$	-5.241***	-5.697***	0.351	0.152**	-5.232***	-5.731***
ΔFin	-5.834***	-5.738***	0.288	0.134	-6.019***	-5.922***
ΔFDI	-8.051***	-7.939***	0.31	0.169**	-11.194***	-11.070***

Table 2: Results of ARDL bound testing to cointegration

Model	Optimal lag structure	F - value	t - statistics
$CO_2 = f(GDP, GDP^2, Elec, Fin, FDI)$	(1,0,1,0,3,1)	5.321	-4.171***

Outline	Introduction	Data	Estimation Process	Results	Conclusions
0	000000	0		○●○○○	00
Model Estimation					

Table 3: Estimated Coefficients from ARDL (1,0,1,0,3,1)

$CO_2 = f(GDP, GDP^2, Elec, Fin, FDI)$								
Variable	Coefficients	t-statistics						
Long rur	Long run estimates: <i>lnCO</i> ₂ as dependent variable							
GDP_t	1.237	3.12***						
GDP_t^2	-0.103	-2.52**						
$Elec_t$	0.09	2.57**						
Fint	-0.04	-2.22**						
FDI_t	0.034	3.46***						
Short run	estimates: ΔlnC	O2 as dependent variable						
GDP_{t-1}	0.862	2.670**						
GDP_{t-1}^2	-0.015	-2.460**						
$Elec_{t-1}$	0.063	0.61						
Fin_{t-1}	-0.006	-2.28**						
FDI_{t-1}	0.002	0.63						
FDI_{t-2}	-0.148	-3.11***						
FDI_{t-3}	-0.007	-2.18**						
ETC_{t-1}	-0.696	-4.17***						

Outline	Introduction	Data	Estimation Process	Results	Conclusions
O	0000000	O		○○●○○	00
Post Estimation					

Table 4: Diagnostic Tests

Test	Coefficient
R^2	0.669
Adjusted R^2	0.496
F-statistics	2.600 (0.022)
Jarque-Bera normality test	1.200 (0.330)
Heteroscedasticity Test: ARCH	2.280 (0.545)
Breusch-Godfrey Serial Correlation LM Test	0.807 (0.415)
Ramsey RESET test	0.912 (0.317)

Outline O	Introduction	Data 0	Estimation Process	Results ○○○●○	Conclusions 00
Post Estimation					

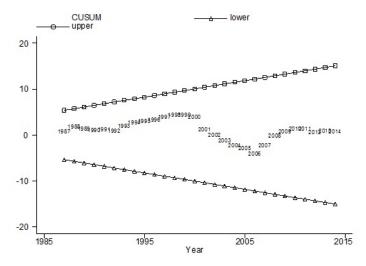


Figure 1: Plot of Cumulative Sum of Recursive Residuals

Outline O	Introduction 0000000	Data 0	Estimation Process	Results	Conclusions 00
Key Findings					

- Elasticity of GDP^2 term confirms that there is inverted U-shape long run relationship between CO_2 emissions and economic growth
- Electricity consumption and foreign direct investments have positive impact on *CO*₂ emissions
- Financial development has a negative impact on CO₂ emissions
- The estimated negative ECT_{t-1} indicates the adjustment speed after any shock will be corrected by almost 70% within a year

Outline		Data	Estimation Process	Conclusions
				00
Recommendation	IS			

- Bahrain has to encourage the development of financial sector
- Follow the attempt of World Trade Center in using windmills to generate electrical energy in new malls and centers
- Assist individuals and institutions in installing solar cells
- Bahrain should expand the installation of Carbon Dioxide recovery plants that utilize the extracted *CO*₂ in producing ammonia and methanol

Outline 0	Introduction	Data 0	Estimation Process	Results 00000	Conclusions ○●

Thank you

