Calculation of the crystal-melt interfacial free energy for the binary hard sphere system with the diameter ratio of 0.9 at the zoetrope

Majeed Amini, Brian Laird (April 2011)

American Physical Society, APS, USA

Abstract:

Using the analysis of equilibrium capillary fluctuations in molecular dynamics simulations, we compute the magnitude and anisotropy of the interfacial free energy γ of the crystal-melt interface for the binary hard-sphere system with $\alpha = 0.9$ at the azeotrope. We found $\gamma 100 = 0.62(2)$, $\gamma 110 = 0.60(2)$, and

 $\gamma 111 = 0.58(2)$. We compare our results with the values of the interfacial free energy of the same system but at points other than azeotrope, as well as with the interfacial free energy of a single hard sphere system. Our results show the relation $\gamma 100 > \gamma 110 > \gamma 111$ being consistent with the simulation results for

various metals, Lennard-Jones (LJ) system, and single hard-sphere system.