

Compose Walsh Sequences

Your global future begins here

College of Arts, Sciences & Education

Dr. Ahmad Hamza Al Cheikha

Orthogonal Sequences

The set
$$S = \{X = (x_1, x_2, ..., x_n); x_i \in F_2 = \{0,1\}\}$$
 is Orthogonal iff:

1. For each X in S

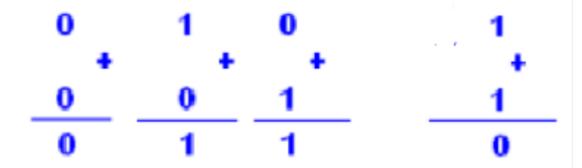
Number of "1"s − Number of "0"s | ≤ 1

For each X, Y in S and X ≠ Y then in X+Y:

Number of "1"s − Number of "0"s < 1

Addition by "mod 2"

The Rules of Addition are:



Example

Walsh's Sequences W of order 2^k

Each sequence w of W except the Zero sequence w₀:

- * Has the length 2^k
- * Contains 2^{k-1} of "1"s
- * Contains 2^{k-1} of "0"s

And W is closed under the Addition

Table 1: W₄-Walsh Sequences of Order $2^2 = 4$

$$\mathbf{w}_0 = 0 \quad 0 \quad 0 \quad 0$$
 $\mathbf{w}_1 = 0 \quad 0 \quad 1 \quad 1$
 $\mathbf{w}_2 = 0 \quad 1 \quad 1 \quad 0$
 $\mathbf{w}_3 = 0 \quad 1 \quad 0 \quad 1$

Table²: W₈-Walsh Sequences of Order 2³=8

Number of "1"s and Number of "0' in x(w)

X	
No of "1"s	No of "0's
<i>n</i> ₁	n ₂

W	
No of "1"s	No of "0's
<i>m</i> ₁	m ₂

Then:

* Number of "1"s in x(w) is:

$$n_1 \cdot m_1 + n_2 \cdot m_2$$

* Number of "0"s in x(w) is:

$$n_1 \cdot m_2 + n_2 \cdot m_1$$

Example for x(w)

$$x = 1010110, \quad n_1 = 4, n_2 = 3$$

 $w = 110, \quad m_1 = 2, \quad m_2 = 1, \quad \bar{w} = 001$
 $x(w) = 110 \quad 001 \quad 110 \quad 001 \quad 110 \quad 110 \quad 001$
Number of "1"s in $x(w)$ is:
 $n_1 \cdot m_1 + n_2 \cdot m_2 = 4(2) + 3(1) = 11$
Number of "0"s in $x(w)$ is:
 $n_1 \cdot m_2 + n_2 \cdot m_1 = 4(1) + 3(2) = 10$

Walsh Sequences

* A is Walsh Sequences of Order 2^m

* B is Walsh Sequences of Order 2ⁿ

Compose A with B: $W_k = A(b_k)$; $W_i = a_i(b_k)$

Α	
No of "1's	No of "0's
2#1-1	271-1

В	
No of "1's	No of "0's
2n-1	2 ⁿ⁻¹

- * Number of "1"s in W_i is: 2^{m+n-1}
- * Number of "0"s in W_i is: 2^{m+n-1}
- * The diference between the number of '1" and the number of "0" is zero
- * W_i + W_j has the same number of "1" and the same number of "0" and the same difference

Result 1

$W_k = A(b_k)$ is Orthogonal set

Compose B with $A: \overline{W_k} = B(a_k); W_i = b_i(a_k)$

В	
No of "1"s	No of "0's
2n-1	2 ⁿ⁻¹

Α	
No of "1's	No of "0's
2#1-1	271-1

- * Number of "1"s in \overline{W}_i is: 2^{M-tM-1}
- * Number of "0"s in \overline{V}_i is: $2^{II o III}$ -1
- * The diference between the number of '1" and the number of "0" is zero
- * ***i + **/i has the same number of "1" and the same number of "0" and the same difference

Result 2

$$\overline{W}_k = \mathbf{B}(\mathbf{a}_k)$$
 is Orthogonal set

Example 1: $A = W_4^*, B = W_8^*, A(B)$

$$a_1(b_1) = (111110000 \ 111110000 \ 000011111 \ 00001111)$$

$$a_2(b_1) = (111110000 \ 000011111 \ 000011111 \ 111110000)$$

$$a_3(b_1) = (111110000 \ 000011111 \ 111110000 \ 00001111)$$

- * The length is: $2^{2+3} = 2^5 = 32$ * Number of "1"s = Number of "0" = $2^{2+3-1} = 2^4 = 16$

Example 2: $B = W_8^*, A = W_4^*, B(A)$

$$b_1(a_1) = (1100\ 1100\ 1100\ 1100\ 0011\ 0011\ 0011\ 0011)$$
 $b_2(a_1) = (1100\ 1100\ 0011\ 0011\ 0011\ 1001\ 1100\ 1100\ 1100)$
 $b_3(a_1) = (1100\ 1100\ 0011\ 0011\ 1100\ 1100\ 0011\ 0011\ 1100)$
 $b_4(a_1) = (1100\ 0011\ 0011\ 1100\ 1100\ 0011\ 1100\ 1100\ 0011)$
 $b_5(a_1) = (1100\ 0011\ 1100\ 0011\ 1100\ 0011\ 1100\ 0011$

- * The length is: $2^{3+2} = 2^5 = 32$
- * Number of "1"s = Number of "0"s

$$=2^{3+2-1}=2^4=16$$

Conclusion and Results

Result 1. Generate $2^n - 1$ sets of Orthogonal Sequences with length 2^{m+n} and minimum distance 2^{m+n-1} .

Result 2. Generate $2^m - 1$ sets of Orthogonal Sequences with length 2^{m+n} and minimum distance 2^{m+n-1} .

Thank you for attention