

Learning Statistics: Tradition vs. Technology

Arts, Science & Education Associate Professor, Mathematical Sciences Center of Statistical Analysis, Director

Dr. Said Taan El Hajjar

Introduction

Implementing Technology as a Tool

(Books with CDs, Internet, video conferencing,.....)

- Undergraduate and Graduate students:
 - Data Analysis (Projects, Thesis,...)
- Nowadays: Implementing Technology as a System?!! (Social Sciences Fields)
- > Type of Technology: PowerPoints, Software, Internet---

Literature Review

PowerPoints

- > Improve the attitude of learners (Hossein et al. ,2005).
- No effect on students' performance during exams (Hossein,2008).
- > Have a strong positive impact on learning (Savoy et al., 2009).

Literature Review

Software

(Continued)

- Comparison investigation between computer supervision and oldstyle teaching (Clark, 1983)
 - Both are effective but it is based on the techniques they are used.
- Supported Clark's conclusion (Dynarski et al., 2007 & Kulik 2003)
 - Variances in the technique
- Center for Educational Research (CER) (NAEYC & Fred Rogers Center, 2012).
 - -Individual capabilities of learners are rather expressed through computers than instructions performed by instructors themselves
- Professor Andy Tomarken teaches his statistics courses in a computer lab (Ellen, 2016)
 - Old-style lecture vs software: Clarify abstractness ——— Grasp

Dr. Said T. EL Hajjar

Literature Review

(Continued)

Internet

- Internet required from instructors to learn more and follow their updates (Mary, 2013).
- Professor Margaret Smithey prepare multi-media lecture presentations comprising clips downloaded through the Internet (Ellen, 2016).
- Nowadays, bigger awareness in online learning. (Chris, 2016).
 - Math subject came in the first place
 - Foreign language came in second place
 - Science came in the third place

Case Study 1

➤ Is there a significant difference between the proportion of men and the proportion of women who will vote Yes on Proposition A?

 In a random sample, 36 of 72 men and 31 of 50 women indicated they would vote Yes.

Test at 0.05 level of significance

Case Study I

(Continued)

■ The hypothesis test is:

 H_0 : $\pi_1 - \pi_2 = 0$ (the two proportions are equal)

 H_A : $\pi_1 - \pi_2 \neq 0$ (there is a significant difference between proportions)

The sample proportions are:

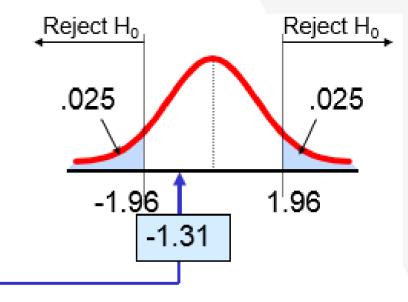
Men: p₁ = 36/72 = .50

Women: p₂ = 31/50 = .62

The pooled estimate for the overall proportion is:

$$\overline{p} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{36 + 31}{72 + 50} = \frac{67}{122} = .549$$

Case Study I

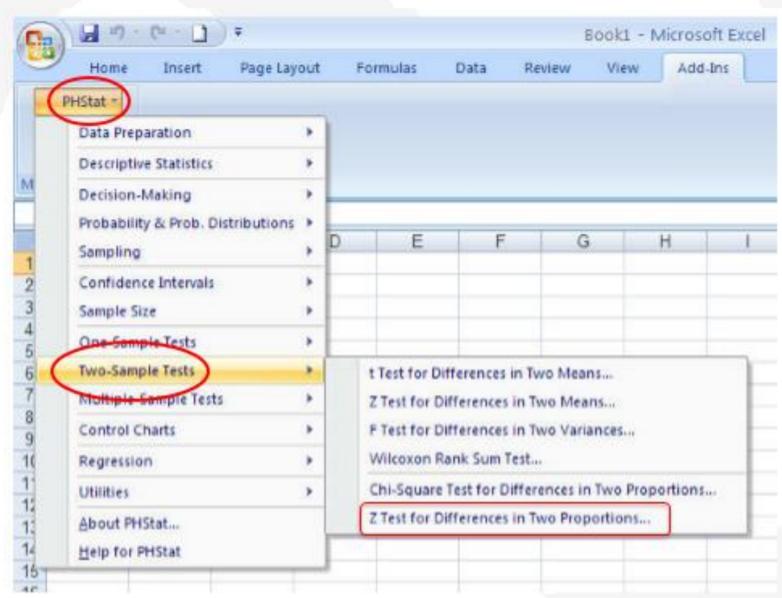

(Continued)

The test statistic for $\pi_1 - \pi_2$ is:

$$z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\overline{p}(1 - \overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$= \frac{(.50 - .62) - (0)}{\sqrt{.549(1 - .549)\left(\frac{1}{72} + \frac{1}{50}\right)}} = \boxed{-1.31}$$

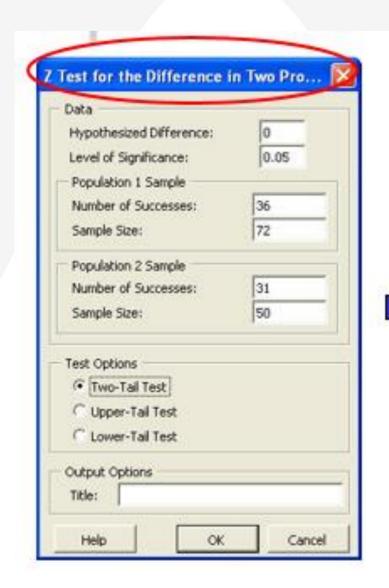
Critical Values = ± 1.96 For $\alpha = .05$

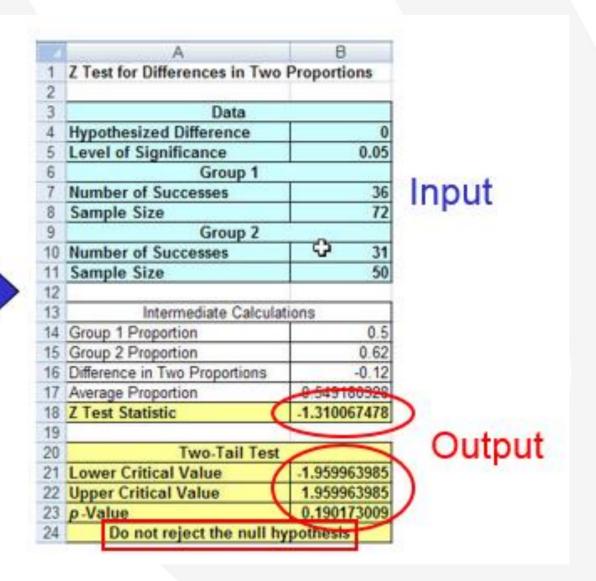


Decision: Do not reject H₀

Conclusion: There is not significant evidence of a difference in the proportion who will vote yes between men and women.

Case Study I "Using Technology"





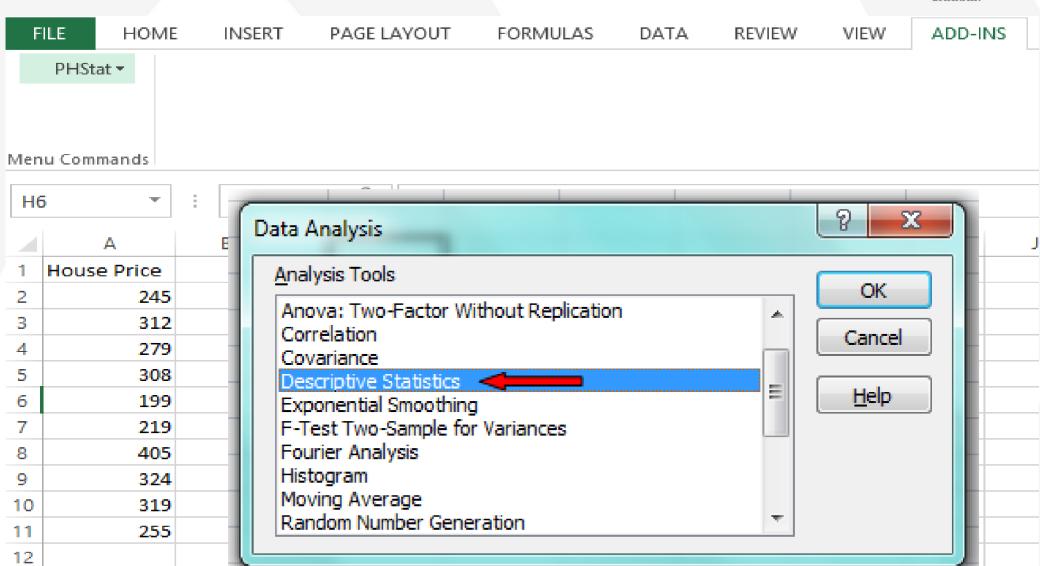
Case Study I "Using Technology"

(Continued

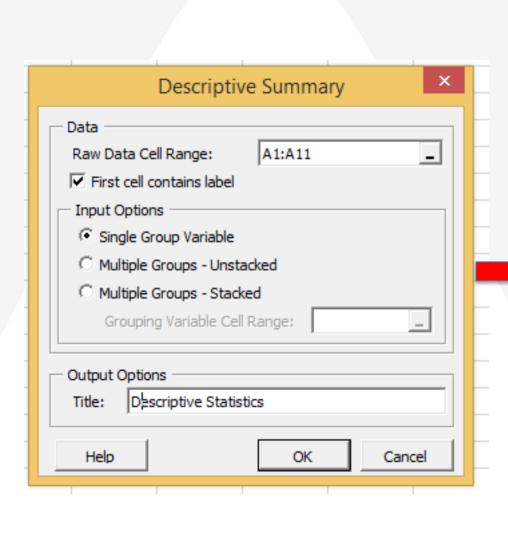
Case Study II

(Continued) قيلهاااقدهاجا

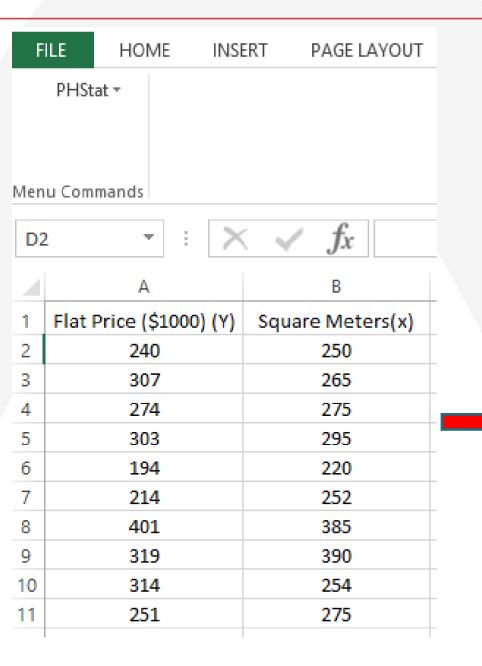
- A real estate agent wishes to study the descriptive statistics of selling price of a house in a certain region.
- A random sample of 10 houses is selected.


House Price in \$1000s
245
312
279
308
199
219
405
324
319
255

Case Study II



Case Study II



	Α	В	
1	Descriptive Statistics	i	
2			
3		House Price	
4	Mean	286.5	
5	Median	293.5	
6	Mode	#N/A	
7	Minimum	199	
8	Maximum	405	_\
9	Range	206	
10	Variance	3622.2778	
11	Standard Deviation	60.1854	
12	Coeff. of Variation	21.01%	
13	Skewness	0.4440	_/
14	Kurtosis	0.3889	
15	Count	10	
16	Standard Error	19.0323	
17			_13
2.00			

Case Study III

Simple Linear Regression						
Data —						
Y Variable Cell Range: A1:A11						
X Variable Cell Range: B1:B11						
First cells in both ranges contain label						
Confidence level for regression coefficients: 95 %						
Regression Tool Output Options						
Regression Statistics Table						
✓ ANOVA and Coefficients Table						
Residuals Table						
Residual Plot						
Cutput Options						
Title:						
☐ Scatter Plot						
Durbin-Watson Statistic						
Confidence Int. Est. & Prediction Int. for X =						
Confidence level for intervals: %						
Help OK Cancel						

Case Study III

									BARKAIN
1	Α	В	С	D	Е	F	G	Н	1
1	1 Simple Linear Regression Analysis								
2									
3	Regression St	atistics							
4	Multiple R	0.7863							
5	R Square	0.6182	5						
6	Adjusted R Square	0.5705							
7	Standard Error	39.5480							
8	Observations	10							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	1	20263.7704	20263.7704	12.9560	0.0070			
13	Residual	8	12512.3296	1564.0412	$\overline{}$				
14	Total	9	32776.1000						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95%	Upper 95%
17	Intercept	43.4183	67.3704	0.6445	0.5373	-111.9382	198.7748	-111.9382	198.77483
18	Square Meters(x)	0.8329	0.2314	3.5994	0.0070	0.2993	1.3664	0.2993	1.36644

Dr. Said T. EL Hajjar

Conclusion

- > Technology in learning statistics becomes essential
- Technology should be used as a system not only as a tool
- The use of technology in statistics helps students' researchers
- The use of technology in learning statistics makes it comprehensive rather than theoretical.
- The use of technology in statistics would be very effective if the faculty believe in it.
- The use of technology would encourage self learning

References

- Ellen,M.(2016).How Technology Enhances Teaching and Learning. CFT'snewsletter,
 Teaching Forum. Retrieved from https://cft.vanderbilt.edu/...teaching.../how-technology-
- Hossein, N. and Abdus, S. (2005). The Effect of PowerPoint Presentations on Student Learning and Attitudes. Global Perspectives on Accounting Education. Volume 2, 2005, 53-73.
- Hossein, N. and Abdus, S. (2008). The Effects of PowerPoint Lecture Notes on Student Performance and Attitudes. The Accounting Educator's Journal. Volume XVIII 2008, 103 -117.
- Maryellen, W. (2012). Does PowerPoint Help or Hinder Learning? Faculty Focus: Higher ED Teaching Strategies from Magna Publications. Retrieved from www.facultyfocus.com.
- Savoy, A., Proctor, R. & Salvendy, G. (2009). Information retention from PowerPoint traditional lecture. Computers and Education, 52,858867
 http://dx.doi.org/10.1016/j.compedu.2008.12.005

End

THANK YOU