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ABSTRACT

The increasing usage of e-commerce website has led to the emergence of Recommender System (RS) 
with the aim of personalizing the web content for each user. One of the successful techniques of RSs is 
Collaborative Filtering (CF) which makes recommendations for users based on what other like-mind 
users had preferred. However, as the world enter Big Data era, CF has faced some challenges such as: 
scalability, sparsity and cold start. Thus, new approaches that overcome the existing problems have 
been studied such as Singular Value Decomposition (SVD). This chapter surveys the literature of RSs, 
reviews the current state of RSs with the main concerns surrounding them due to Big Data, investigates 
thoroughly SVD and provides an implementation to it using Apache Hadoop and Spark. This is intended 
to validate the applicability of, existing contributions to the field of, SVD-based RSs as well as validated 
the effectiveness of Hadoop and spark in developing large-scale systems. The results proved the scal-
ability of SVD-based RS and its applicability to Big Data.

INTRODUCTION

Advances in technology, the wide spread of its usage and the connectivity of everything to the Internet 
have led the world to experience unusual rate of generating and storing data; resulting in what is being 
called Big Data phenomenon. As a consequence of this emerging fluid of data, normal tasks and activities 
become challenges. For instance, browsing the web and searching for interesting information or products 
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is a routine and common task. However, the massive amount of data on the web is expanding the noise 
there making it harder and more time consuming to choose the interesting pieces of information from 
all this noise (Villa, 2012; Schelter & Owen, 2012).

Likewise, the currently available systems, technologies and tools show their limitation in processing 
and managing this massive amount of data. This leads to the invention of new technologies, such as 
Map Reduce of Google, Hadoop of Yahoo! And Spark from University of California, Berkely. These 
technologies are just like the telescopes which allow us to comprehend the universe (Schönberger & 
Cukier, 2013). With this in mind, existing systems have been adapted to meet Big Data by using the 
newly invented tools and technologies. One of these systems is recommender system and it is the one 
under study in this chapter.

Recommender systems have been implemented long time ago by several Internet giants; like Amazon.
com, Facebook and Google. These systems suggest new items that might be of interest to the user by 
analyzing user’s profiles, their activities on the websites as well as their purchase history; if applicable. 
However, Big Data increases the cognitive load on the user, posing more challenges on recommender 
systems as it should provide many recommendations of high quality by analyzing huge data of customers 
and products. In another word, high quality, scalability and performance become concerns. (Berkeley 
School: Lecture12 -Analyzing Big Data with Twitter: Recommender Systems, 2012; Chiky, et al, 2012; 
Thangavel, et al, 2013). This encourages more research work on recommendation algorithms and the use 
of new tools and frameworks like Appache Hadoop and Spark, i.e. Big Data tools, in the development 
of scalable systems as well as preventing the computational cost from going up while processing vast 
amount of data (Schelter & Owen, 2012; Zhao & Shang, 2010).

This chapter provides a comprehensive and self-contained description of this research area. Such a 
work will constitute a milestone for studies on Big Data; since it will provide review of key references 
which will be useful in the search for research topics dealing with Big Data. To achieve such goal, this 
chapter will review the literature on Big Data and recommendation engines. In addition, survey the 
promising approaches of recommender systems that are expected to perform well while handling Big 
Data; such as Singular Value Decomposition. Furthermore, assess the applicability and viability of Big 
Data technologies (i.e. Apache Hadoop and Spark) to the field of recommendation system as well as 
develop a scalable recommender system that can handle large volume of data.

BACKGROUND

Recommender System Overview

Recommender system’s (RS) main mission is to find the taste of a person and automatically suggests, 
new, relevant content for him/her. These suggestions aid to decision-making; for example: which item 
to buy, which music to listen to, or which news to read. This is achieved by finding patterns in people 
opinions, even though their opinions vary. These patterns are useful in predicting what a user might like 
or dislike. For illustration, people like something which is similar to what they liked before, or they like 
what others of similar taste and opinion seem to like (Owen et al., 2012; Ricci et al., 2011).

Most of recommender systems aim to provide a personalize websites by suggesting different items 
to different users. However, there are some recommendations which are non-personalized such as: Top 
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ten selections of movies in a magazine or a web site. Such recommendations are much easier than per-
sonalized one (Ricci et al., 2011)

In the case of personalized recommendations, the system comes up with a ranked list of most relevant 
items. This is achieved by analyzing the user preference that is usually expressed explicitly- in terms of 
rating- or expressed implicitly through user action and activities in the website; for example: by consid-
ering the navigation to a specific product page. After obtaining the ranked list of recommendation, the 
user can view the recommendations and have the choice of accepting or rejecting them. In addition, the 
user may have the option of providing a feedback on them (Ricci et al., 2011).

Recommender System’s Problem Formulation

Suppose that a Big Data set records the preferences of big number of users; denoted by m; for some 
or all of n items. The preference record usually takes the form of tuple (userID, itemID, rating); where 
rating takes a value on a numerical scale (for example from 1-5) and that expresses how much the user 
holding userID likes the item with itemID.

Let R be a user–item matrix of size m× n, where m is the number of users and n is number of items. 
This matrix represents the preference records such that each one of the m rows represents the preferences 
of one user to the available n items. In another word, the value of a particular cell Rij either holds the 
rating given by user i to item j or null if the user did not rate the item yet, as shown in Figure 1. In most 
of the cases, this matrix is sparse because each user does not normally rate all the items in the data set.

The mission of a RS is to predict the missing ratings; i.e. predict how a user would rate an item in 
the future. This aids the recommender system in recommending items that are predicted to receive high 
rating by the user (Melville & Sindhwani, 2010).

Recommender System Approaches

The commonly used approach of recommender system is collaborative filtering. It makes recommen-
dation based on the existing relationship between users and items (i.e. who bought which item? Who 
viewed which item? Who liked which item?). This approach is relying on the following assumptions:

Figure 1. User-item matrix 
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1.  People may have similar taste and preferences.
2.  People interest and preferences are stable.
3.  We can rely on past preferences to predict their new choices.

The two common variations of collaborative filtering approach are:

1.  User-based collaborative filtering (which is also called nearest-neighbor collaborative filtering):

It examines the entire data set of users and items to generate recommendations by identifying users 
that have similar interests to the target one and then recommends items that have been bought by oth-
ers and not the target user. This proceeds by constructing user-item matrix, computing some statistical 
metrics on it to measure the similarity between different rows and finding the nearest neighbors. These 
neighbors are supposed to have similar interest with the target user. This will be followed by combining 
the neighbors’ preferences and finding the top N items that have been rated highly by neighbors and 
not by the target user. These N items will form the top N recommendations. (Thangavel, et al, 2013).

Despite the fact that this approach has been adapted widely, it suffers from scalability problem which 
was not considered a big issue few decades ago when the number of users and items was relatively small. 
However, as the data set size increases in big data era, computing the similarity between users is increas-
ing exponentially because of the need for comparing each user with all the other users. Moreover, as the 
users interact with more items and change their preferences, the similarity needs to be recomputed; i.e. 
similarity pre-computation becomes useless. This is degrading the performance of RSs and that is why 
it is being considered as a big problem today. Furthermore, having a sparse user-item matrix, which is 
usually the case because users interact with relatively small set of items, also adds to the difficulty of 
computing user’s similarity since the number of common items is relatively small if not zero (Thangavel, 
et al, 2013; Walunj & Sadafale, 2013b; Owen et al., 2012; Lee & Chang, 2013).

2.  Item-based collaborative filtering:

It examines the set of items rated by the target user and finds other items similar to them (which are 
called neighbors), by considering other users’ preferences. With the hope of finding neighbors, each 
item will be represented by a vector of the ratings given by the different users, and then, the similarity 
of two items will be measured by computing the similarity between their vectors. These neighbors will 
form the recommendations and will be ranked after predicting the preference of the target user for each 
one of them. The prediction Pu,i of the target user to one of the neighbors, item i, is given by:
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Where N is the number of neighbors, Sim(i,j) is the similarity between the item j and its neighbor i, 
Ru,j is the rating given by user u to item j. (Lee & Chang, 2013; Gong, et al, 2009).
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However, measuring the similarities between items takes long time and consumes lots of computer 
resources. This is the main pitfall of this method. Anyhow, changes in items are not as frequent as changes 
in users and, thus, such computations can be pre-calculated in an offline mode. Another strength of this 
algorithm is that it is not affected by having a sparse user-item matrix. This is because with large number 
of user, there will be enough number of ratings for each item which enable measuring the similarity 
between the different items and getting significant statistics. (Thangavel, et al, 2013; Walunj & Sadafale, 
2013b; Lee & Chang, 2013).

Generally speaking, CF whether it is an item-based or a user based approach, has a well-known strength 
in which it is not domain specific, and thus, does not rely on the items’ properties and attributes. That 
is why it is applicable to different domains: movie recommendation, book recommendation, flowers, 
food and others. However, CF suffers from the following problems:

1.  Scalability: RSs are being fed with massive amount of data which should be processed rapidly. 
However, CF algorithms computation time grows up with the continuous increase in the number 
of users and items (Lee & Chang, 2013).

2.  Data Sparsity: In an e-commerce website, users usually rate small fraction of all the available 
items resulting in sparse data set. This degrades the accuracy of the RS because it complicates the 
process of finding similarities between users as the number of common items becomes relatively 
small (Lee & Chang, 2013).

3.  Cold-Start Problems: This problem emerged as a consequence of data sparsity problem; where 
new users cannot get personalized recommendation unless they rate a sufficient number of items. 
Likewise, new items cannot be recommended before getting reasonable number or ratings (Kabore, 
2012).

4.  Synonymy: Different products have different names in the data set even if they are similar to 
each other. In this case, a standard CF RS will treat them differently and will not infer the hidden 
association between them. For illustration, “cartoon film” and “cartoon movie” are two phrases 
refereeing to the same item. However, ordinary implementations of CF algorithms had treated them 
differently! (Sarwar et al, 2000).

5.  Grey Sheep: It addresses users whose opinions do not match with any other group of users. 
Consequently, CF cannot serve grey sheep since it mainly relies on the similarity between users’ 
previous preferences (Walunj & Sadafale, 2013a).

The aforementioned, standard, implementation of item-based and user-based CF are following 
memory-based approach in which the entire data set is kept in memory while processing it and search-
ing for similarities between users or items in order to make recommendation. The other approach of 
implementing CF algorithm is called model based approach in which the data set is used in an offline 
mode to generate a model by utilizing some data mining, machine learning or statistical techniques. This 
model could be used later on to predict the ratings for unseen items without the need of processing the 
entire data set again and again. Examples of this approach are: decision trees, clustering methods and 
matrix factorization models (Pagare & Patil, 2013).

Point often overlooked is that model-based approach generates predictions with lower accuracy when 
compared with memory based approach. However, it has better scalability. Thus, many researchers are 
investing their effort in studying and enhancing model-based CF algorithms. One of these algorithms is 
Singular value decomposition (SVD) based recommenders and it is the one under study in this chapter.
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Singular Value Decomposition Recommender System:

SVD is one of the famous matrix factorization techniques that decompose a matrix R of size m×n and 
rank = r into three matrices U, S and Vas follows:

R U SV T= . .  

where:

U: an orthonormal matrix of size m×r holding left singular vectors of R in its columns; i.e. its r columns 
hold eigenvectors of the r nonzero eigenvalues of RRT.

S: a diagonal matrix of size r×rholding the singular values of R in its diagonal entries in decreasing order; 
i.e. s1 ≥ s2≥ s3≥ ……≥ sr. These r values are the nonnegative square roots of eigenvalues of RRT.

V: an orthonormal matrix of size n×r holding the right singular vectors of R in its columns; i.e. its r 
columns hold eigenvectors of the r nonzero eigenvalues of RTR .

Furthermore, S could be reduced by taking the largest k singular values only and thus obtain Sk of 
size k×k. Accordingly, U and V could be reduced by retaining the first k singular vectors and discarding 
the rest. In another word, Uk is generated by eliminating the last r-k column of U and, similarly, Vk is 
generated by eliminating the last r-k column of V. This will yield Uk of size m×k and Vk of size n×k. As 
a consequence, Rk = Uk . Sk . V

T
k and Rk ≈R, where Rk is the closest rank k approximation to R (Lee & 

Chang, 2013; Sarwar et al., 2000; Berry, et al, 1995).

Applying SVD on Recommender System

This approach assumes that the relationship between users and items as well as the similarity between 
users / items could be induced by some hidden lower dimensional structure in the data. For illustration, 
the ratings given by a specific user to a particular movie, assuming that items are movies, depends on 
some implicit factors like the preference of that user across different movie genres. As a matter of fact, 
it treats users and items as unknown feature vectors to be learnt by applying SVD to user–item matrix 
and breaking it down into three smaller matrices: U, V and S (Melville & Sindhwani, 2010).

With this in mind, applying SVD to RSs proceeds as follow:
Construct user-item matrix R of size m×n from the input data set; which is usually a sparse matrix. 

Unfortunately, this sparsity degrades the accuracy of the predictions computed by SVD. That is why it is 
common in the literature to impute the sparse R before computing its SVD. There are several imputation 
techniques and here are the most common one (Ghazanfar & Bennett, 2012):

1.  Impute by Zero (ByZero): which fills all the missing entries by zero. However, this leads to 
predicting ratings close to zeros because of the abundance of zeros in the imputed matrix.

2.  Impute by Item Average (ItemAvgRating): which fills the missing values in each column by the 
average rating of the corresponding item.

3.  Impute by User Average (UserAvgRating): which fills the missing values in each row by the 
average rating of the corresponding user.
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4.  Impute by the mean of ItemAvgRating and UserAvgRating (Mean_ 
ItemAvgRating&UserAvgRating): which fills each missing value by the average of its corre-
sponding item’s average rating and its corresponding user’s average rating.

As a result, a dense matrix Rfilled is obtained and this could be interpreted as overcoming the sparsity 
problem associated with RSs. Furthermore, Rfilled is normalized by subtracting the average rating of each 
user from its corresponding row resulting in Rnorm. The last step is useful in offsetting the difference in 
rating scale between the different users (Vozalis & Margaritis, 2006).

At this point, SVD could be applied to Rnorm to compute Uk (this holds users’ features), Sk (holds the 
strength of the hidden features) and Vk (holds items’ features) such that their inner product will give the 
closest rank-k approximation to Rnorm. This lower-rank approximation of user-item matrix is better than 
the original one since SVD eliminate the noise in the user-item relationship by discarding the small 
singular values from S (Sarwar et. al., 2000).

Henceforth, the preference of user i to item j could be predicted by the dot product of their correspond-
ing features vectors; i.e., compute the dot product of the ith row of (Uk.Sk) and jth column of VT

k and add 
back the user average rating that was subtracted while normalizing Rfilled. This could be expressed as:

P r U S Vij i k k i j
T= + ( ). .

,_ _,  

Where pij is the predicted rating for user i and item j, ri  is the user average rating, VT
_,j is the jth col-

umn of VT and (Uk.Sk) is the ith row of the matrix resulting from multiplying Uk and Sk.
In point of fact, the dot product of two vectors measures the cosine similarity between them. Thus, 

the above formula could be interpreted as finding the similarity between user i and item j vectors and 
then adding the user average rating to predict the missing rating pij.

EXPERIMENTS AND EVALUATIONS

Experimental Environment

All the experiments, behind this chapter, were implemented using Scala programming language on 
Eclipse, running on MacBook Pro with X 10.9.3 OS, 2.4 GHz Intel Core i5 processor and 8 GB of RAM. 
This machine served as a single node cluster for Apache hadoop 2.4.0 which was configured in pseudo-
distributed mode. Moreover, Apache spark v. 1.0.2 was used as it provides fast distributed computations.

Data Set

The data set used in this work is the 1M MovieLens set which contains 1million ratings provided by 
more than 6000 users to around 3900 movies in the form of tuple (userID, MovieID, rating, timestamp). 
Ratings take integer values in the interval [1, 5] indicating how much the user likes the movie.

The aforementioned data set was divided into training set and test set based on different ratios (i.e. 
training ratios). Furthermore, the training set was used to fill the user-item matrix R of size 6040 × 3900; 
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which will be used to compute SVD, come-up with U, S and V matrices as well as predict ratings for 
unrated items. On the other hand, the test set was used to evaluate the accuracy of the predicted ratings.

Evaluation Metric

Different empirical evaluation metrics are there to assess the quality of the estimated predictions. The 
most common metrics are the statistical one such as Mean Absolute Error (MAE) and Root Mean Square 
Error (RMSE). In this chapter, MAE is used.

The evaluation process of this work started by dividing the data set into two disjoint sets; one for 
training and the second for testing the system. The predicted ratings will be compared with the actual 
ratings in the test set by measuring MAE which will compute the average of the absolute difference 
between each predicted value and its corresponding actual rating (Sarwar et al., 2000), i.e.

MAE
p r

N

i j i j
I

N

=
−

=
∑ , ,

1  

Where N is the size of the test set, pi,j is the predicted rating for user i and ri,j is the actual ratings for 
user u. A smaller value of MAE refers to a higher prediction accuracy and thus better recommendations.

Choosing the Number of Dimensions

Reducing the dimensions of the original matrix R is useful because it aids in eliminating the noise and 
focusing on the important information. With this in mind, an appropriate value of k should be selected 
such that it can filter out the noise but not leads to the loose of important information. In another word, 
the value of k should be large enough to ensure capturing the essential structure of matrix R but small 
enough to filter out noise and avoid overfitting (Sarwar et al., 2000; Berry, Dumais, & O’Brien, 1995). 
The best value of k will be experimentally determined by trying different values.

Experiments and Results

Our work started by loading 1M MovieLens data set into HDFS, where part of it, i.e. the training set, 
was used to fill the user-item matrix R. After that, R underwent two preprocessing operations: imputa-
tion and normalization. The imputation was done by Mean_ItemAvgRating&UserAvgRating, i.e. mean 
of item average rating and user average rating, after experimentally proving its superiority over other 
imputation techniques (refer to Experiment 2). Furthermore, the normalization step subtracted the aver-
age rating of each user from its corresponding row resulting in Rnorm.

This was followed by using Apache Spark to compute SVD and come up with: Uk, Vk, and Sk. This 
is equivalent to extracting both user’s and items’ features from R. For that purpose, k was set to 20 after 
the results of experiment 1.

In order to compute a missing rating for one user, its corresponding row of (U.S) was multiplied by 
VT column that corresponds to the target item and then denormalized by adding the user average rating.
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Experiment 1: Determining the Appropriate Number of Dimensions

The work was executed several times with different values of k, ranging from 10 to 300, and different 
training ratio denoted as x. The results are presented in table 1 by demonstrating the value of MAE 
obtained for each pair of (k, x) after imputing the rating matrix by the mean of user average rating and 
item average rating .

As a result, 20 is found to be a good value of k and thus it is fixed in the other experiments.

Experiment 2: Determining the Best Imputation Technique

Four techniques of imputation (i.e. impute ByZero, impute by ItemAvgRating, impute byUserAvgRating 
and impute by Mean_ItemAvgRating&UserAvgRating) were tested against multiple values of k. The 
results presented in table 2 shows the superiority of imputing by Mean_ItemAvgRating&UserAvgRating 
as it gives the lower values of MAE. Thus, it will be used in the other experiment.

Experiment 3: Evaluating the Accuracy of SVD on different training ratio

The work was executed several times with different training ratios ranging from 35% to 95%, with k =20 
and k = 100. Note that the user-item matrix R was imputed by Mean_ItemAvgRating&UserAvgRating 
before computing its SVD. This experiment intended to study the real effect of the number of dimensions 
k on the prediction quality. Its results are presented in table 3.

Table 1. MAE Measured for different training ratios and different values of k 

Training Ratio

k x= 40% x= 60% x= 80%

10 0.752063387 0.740626631 0.729999025

20 0.751235952 0.737954414 0.724461829

30 0.751605786 0.738107001 0.723582636

40 0.752364535 0.738714968 0.723803209

50 0.753327523 0.739710017 0.725192112

60 0.754025958 0.740751258 0.726154802

70 0.754724263 0.741471676 0.727282644

80 0.755378978 0.742729653 0.728420107

90 0.755930363 0.743485881 0.729623117

100 0.756510921 0.744293948 0.730338578

150 0.759248743 0.748479721 0.735940524

200 0.761302063 0.752022533 0.740869085

250 0.762834111 0.754352648 0.744583552

300 0.764142161 0.756565002 0.747871699
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The figure compares the MAE values of different training ratio for two values of k. It is obvious that 
MAE takes less values for k=20 than those of k = 100; but not significant. This is validating what has 
been stated repeatedly in the literature; that a larger value of k does not necessarily gives better predic-
tions despite the fact that it gives a closer approximation to the original matrix.

Table 2. MAE for Different Imputation Techniques and Different Values of k 

Imputation Technique

k ByZero UserAvgRating ItemAvgRating Mean_ UserAvgRating&ItemAvgRating

10 1.287082589 0.763900832 0.738045498 0.729999025

20 1.340593039 0.758800163 0.732242767 0.724461829

30 1.351316283 0.758681267 0.731619885 0.723582636

40 1.342134276 0.760268678 0.731981172 0.723803209

50 1.331709429 0.762213489 0.733055102 0.725192112

60 1.317791963 0.764543289 0.733818382 0.726154802

70 1.303016117 0.766207466 0.734838138 0.727282644

80 1.288611141 0.768863197 0.736044939 0.728420107

90 1.274236198 0.770501176 0.737138793 0.735940524

100 1.261225796 0.772165966 0.738514469 0.730338578

150 1.198043117 0.780474068 0.744252067 0.735940524

Table 3. MAE for different training ratios with k=20 and k=100 

k

Training Ratio x k=20 k=100

0.35 0.7549804 0.759679233

0.4 0.751235952 0.756510921

0.45 0.747814989 0.753365509

0.5 0.744018997 0.749880733

0.55 0.741011898 0.747432557

0.6 0.737954414 0.744293948

0.65 0.734098595 0.740644033

0.7 0.731331182 0.737610654

0.75 0.727741033 0.734113758

0.8 0.724461829 0.730338578

0.85 0.721460479 0.727461993

0.9 0.72096045 0.726117655

0.95 0.733633592 0.740065812
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DISCUSSION

The main computational advantage of running these experiments, which implement SVD-based recom-
mender system, using Hadoop, Spark and Scala is its easy parallelization. This proves the powerfulness 
of these frameworks/APIs in implementing large-scale systems with parallelized operations in distributed 
mode.

The results are comparable with the results of other works, discussed previously in the literature 
review, such as the one conducted by Sarwar and his colleagues, by Gong and Dai as well as by Zhou 
and his colleagues; that were carried on significantly smaller data set (i.e. 100 K MovieLense Data Set). 
This proves that SVD approach is not only effective for, ordinary, small data but even for Big Data sets.

Indeed, this work resulted in better predictions when compared with Sarwar et. al. work although it 
has been carried on much bigger data set. To put it differently, the best predictions obtained by Sarwar 
et. al. on 100K MovieLense data set were using training data set of 80% and k∈ [ , ]20 100  as they get 
MAE ranging from 0.748 to 0.732 (Sarwar, et al, 2000). However, the MAE obtained by our implemen-
tation, for the same values of k, the same training ratio and 1M MovieLense data set, were ranging be-
tween 0.7230 and 0.723.

While looking for the best value of k, 20 was found as the favorable one since it gave a small value of 
MAE when checking it over different training ratios. This is reasonable when comparing it with previous 
works which found k = 14 (Sarwar, et al, 2000; Sarwar et. al., 2002) or k = 15 (Gong, Ye & Dai, 2009) for 
smaller data set. Notable, increasing the volume of the data set to 1 million ratings did not, dramatically, 
increase the value of k which validates other researchers’ opinions, reported in some research papers, 
in which a small number of dimensions usually give pretty good results with good approximation to the 
original matrix R. This is simply because a small value of k is sufficient to capture the important features 
of users and items and thus make good predictions. However, increasing the value of k might simply 
represent adding more noise to the data which does not add value to the process of making predictions.

Furthermore, trying different imputation techniques and tracking their MAE showed the impor-
tance of pre-processing steps and its effect on the prediction accuracy. As per our experiments, Mean_
ItemAvgRating&UserAvgRating outperformed other imputation techniques since it gave lower MAE.

Moreover, repeating the experiments multiple times with different values of k and different values 
of training ratio x; revealed the sensitivity of the prediction quality to the sparsity of the data set since 
MAE values decrease as the training ratios increase and the sparsity decrease. Added to that, it revealed 
the significant effect of the value of k on the prediction quality, as well as the effectiveness of SVD in 
dealing with cold-start cases.

FUTURE RESEARCH DIRECTIONS

The work presented in this chapter is just the starting point in exploring the current state of recommender 
system in Big Data Era. One might extend the work by deploying the system on multi-node cluster in 
order to be able to assess its scalability, performance and accuracy in a distributed mode. Another future 
direction could be to implement a hybrid approach of SVD that combines stochastic version of SVD 
proposed by Lee and Chang (Lee & Chang, 2013), incremental version of SVD proposed by Sarwar, B. et 
al. (Sarwar, B. et al., 2002) and Expectation Maximization technique presented by Kurucz et al. (Kurucz 
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et al., 2007). This will be an iterative process that applies a stochastic version of SVD, repeatedly, to a 
matrix and use the outcome of one iteration to impute the input of the next iteration. Stochastic SVD 
could be done in an incremental manner such that the advent of a new user will not imply re-computing 
the decomposition of user-item matrix; but the new user will be projected to the existing SVD model.

CONCLUSION

As recommender systems proved their powerfulness in personalizing the web content for each user, more 
research efforts have been devoted to improving it and evaluate its different algorithms. The commonly 
adapted approach is collaborative filtering that mines the interaction records between users and items 
to infer user’s taste and thus recommends items that match his taste. Surprisingly, CF techniques have 
started facing some challenges with the dawn of Big Data era. This new phenomenon is inflaming the 
data volume to be processed by RS and thus raises some concerns about the sparseness of the available 
data, scalability of RSs as well as the quality of the predictions. As a consequence, new approaches of 
CF have been proposed and studied such as Singular value decomposition. In addition, various Big Data 
frameworks and APIs (such as Hadoop, Mahout and Spark) have been released and tried in building 
large-scale recommender systems.

This chapter contributes to the state of the art of recommender systems as it provides an implementa-
tion of a large scale SVD-based recommender system using both Apache Hadoop and Spark. This came 
as a result of an intensive study to the literature as well as conducting several experiments using Scala 
programming language on top of apache Hadoop and Spark. The study involved several topics which are: 
Big Data phenomenon, the different techniques and approaches of recommender systems together with 
their pros and cons, the challenges posed by big data on recommender systems and CF in particular, the 
applicability of SVD for recommender systems as well as its effectiveness in solving the aforementioned 
challenges. The experiments were conducted to determine the optimal values of two essential param-
eters that affect SVD-based RS which are: the imputation technique to be used in filling the user-item 
matrix before processing it and the number of dimensions to be retained after decomposing the matrix. 
The results showed that the best imputation technique is using the average of both item average rating 
and user average rating and that the optimal number of dimensions is k=20 as it gave the lowest MAE.

This work solved the scalability problem by utilizing Hadoop and its valuable features. In addition, 
it showed that pretty good quality could be achieved by choosing a robust imputation technique (as a 
preprocessing step) before applying SVD to the user-item matrix. Moreover, it asserted that Apache 
Spark comes with attractive merits which enable easy integration with Hadoop and easy development 
of parallelizable code.

This drew a conclusion that a careful implementation of a scalable SVD-based collaborative filtering 
recommender system is effective when choosing the right parameters and the appropriate frameworks 
and APIs.
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KEY TERMS AND DEFINITIONS

Apache Hadoop: An open source framework that provides a distributed data storage and computa-
tion utilizing commodity servers.

Apache Spark: An open source framework supporting in-memory data analysis and distributed 
programming that has been built on top of Apache Hadoop to facilitate distributed computation.

Column-Orthonormal Matrix: A matrix where all its vectors length is 1 and the dot of any two of 
them is zero since they are orthogonal.

Matrix-Rank: The number of rows that are linearly independent.
Matrix-Transpose: A matrix resulting from swapping row-vectors with column vectors.
Recommender System: An automated system that suggests relevant, not seen yet, items to the user.
Scala: A programming language that facilitate the development of scalable systems.
Singular Value Decomposition: Breaking down a matrix into three, smaller matrices, U, S and V 

in which their product yields back the original matrix.
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